
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-1999-208980
ICASE Report No. 99-4

A Practical Approach to Implementing Real-time
Semantics

Gerald Lüttgen
ICASE, Hampton, Virginia

Girish Bhat
MakeLabs, Cary, North Carolina

Rance Cleaveland
State University of New York at Stony Brook, Stony Brook, New York

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA
Operated by Universities Space Research Association

January 1999

Prepared for Langley Research Center
under Contract NAS1-97046

A PRACTICAL APPROACH TO IMPLEMENTING REAL-TIME SEMANTICS

GERALD L�UTTGEN�, GIRISH BHATy, AND RANCE CLEAVELANDz

Abstract. This paper investigates implementations of process algebras which are suitable for modeling

concurrent real-time systems. It suggests an approach for e�ciently implementing real-time semantics using

dynamic priorities. For this purpose a process algebra with dynamic priority is de�ned, whose semantics

corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach

is that it drastically reduces the state-space sizes of the systems in question while preserving all properties

of their functional and real-time behavior.

The utility of the technique is demonstrated by a case study which deals with the formal modeling and

veri�cation of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North

Carolina, an automated veri�cation tool in which the process algebra with dynamic priority is implemented.

It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the

one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for

verifying several mandatory properties of the bus protocol.

Key words. dynamic priority, process algebra, real-time semantics, SCSI-2 bus-protocol, veri�cation

Subject classi�cation. Computer Science

1. Introduction. A variety of formal approaches have been introduced for modeling and verifying

concurrent and distributed systems, many of which are based on a common scheme consisting of three basic

components, as depicted in Figure 1.1: a speci�cation language, a semantic model, and a veri�cation method.

Speci�cation languages provide a syntactic means for describing (abstractions of) real-world systems and

can be of graphical nature (e.g., Statecharts [19]), term-based (e.g., process algebras [21, 27]), or variants of

logics (e.g., monadic logics [18]). Figure 1.1 illustrates the di�erent looks and feels of these languages by a

small example modeling the behavior of a simple one-place bu�er, which cyclically o�ers communications

on ports in and out. Many speci�cation languages have in common that their semantics is given in terms

of operational models. More precisely, syntactic models are compiled to (labeled) transition systems which

describe the real-world system's operational behavior. Transition systems provide a convenient structure

on which many veri�cation methods, such as simple reachability analyses { which allow for analyzing, e.g.,

deadlock behavior { and more advanced techniques, such as model-checking [10], work. However, only with

the advent of veri�cation tools [15, 20, 22, 25] in the last decade have formal approaches emerged as practical

aids for system designers [2, 14, 17].

�Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton,

VA 23681-2199, e-mail: luettgen@icase.edu. This research was supported by the National Aeronautics and Space Administration

under NASA Contract No. NAS1-97046 while the �rst author was in residence at the Institute for Computer Applications in

Science and Engineering, NASA Langley Research Center, Hampton, VA 23681-2199.
yMakeLabs, A Division of Make Systems, Inc., 4000 Regency Parkway, Suite 150, Cary, NC 27511-8502, e-mail:

girish@makesys.com.
zDepartment of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, e-mail:

rance@cs.sunysb.edu. Research supported by NSF grants CCR-9257963, CCR-9505662, CCR-9804091, and INT-9603441,

AFOSR grant F49620-95-1-0508, and ARO grant P-38682-MA.

1

t.

t.

on
works

model checkingreachability analysis

....

(labeled) transition systems

formal verification methods

compiled

semantic (operational) models

B := in.out.B

(finite) automata

Statecharts

specification languages

monadic logic

to

‘‘graph’’

B

process algebra

Empty
in(t+1)

out

in

out/.

in(t)

Full

out(t)

out(t+1)

in/.

Fig. 1.1. A typical veri�cation framework.

This paper addresses the problem of modeling and verifying concurrent systems where real-time plays an

important role for their functional behavior. On the one hand, real-time is often used to implement synchro-

nization constraints in distributed environments. As an example of a synchronization constraint, consider

a communication protocol where the next protocol phase may only be entered if some or all components

agree. On the other hand, electric phenomena, e.g., wire glitches that may lead to malfunction, can be

avoided using deskew delays. Thus, for accurately modeling those systems it is necessary to capture their

real-time aspects, thereby motivating the need for real-time speci�cation languages, such as real-time pro-

cess algebras [28, 29], and for their e�cient implementation. Existing implementations of real-time process

algebras typically cause state spaces to explode, thereby making many veri�cation methods impracticable.

The reason for the state explosion is that time is considered as part of the state, i.e., a new state is generated

for every clock tick. We tackle this problem by using dynamic priorities to model real-time. We introduce

a new process algebra, called CCSdp (Calculus of Communicating Systems with dynamic priority), which es-

sentially extends the Calculus of Communicating Systems (CCS) [27] by assigning priority values to actions.

Unlike conventional process algebras with priority [9, 11, 12], actions in our algebra do not have �xed or

static priority values; they may change as systems evolve. It is in this sense that we refer to CCSdp as a

process algebra with dynamic priority. In contrast to traditional real-time process algebras, e.g., a variation

of Temporal CCS [28] which we refer to as CCSrt (CCS with real-time), the semantics of CCSdp interprets

delays preceding actions as priority values attached to these actions, i.e., the longer the delay preceding

2

an action, the lower is its priority. CCSdp semantics avoids the unfolding of delay values into sequences of

elementary steps, each consuming one time unit, thereby providing a formal foundation for e�ciently imple-

menting real-time semantics. The soundness and completeness of this technique is proved by establishing a

one-to-one correspondence between CCSdp and CCSrt semantics in terms of bisimulation [27] and temporal

logics [10]. It is important to note that our approach does not abstract away any aspects of real-time. Thus,

all quantitative timing explicit in CCSrt semantics can still be analyzed within CCSdp semantics.

The utility of our technique is shown by means of a real-world example, namely modeling and verifying

several aspects of the bus protocol of the Small Computer System Interface (SCSI), a protocol used in many

of today's computers. The protocol's model is derived from the o�cial ANSI standard [1], where real-time

delays are recommended for implementing synchronization constraints as well as for ensuring correct behavior

in the presence of signal glitches. An accurate model of the SCSI-2 bus-protocol thus requires to consider

real-time. To this end, we model the protocol in the syntax common to both CCSrt and CCSdp. We then

generate the state spaces according to both semantics and show that the size of our model is an order of

magnitude smaller in CCSdp semantics than in CCSrt semantics. The modeling of the protocol was carried out

in the Concurrency Workbench of North Carolina [16], CWB-NC, a tool for analyzing and verifying concurrent

systems. In order to testify to the accuracy of our modeling, we extract several mandatory properties of

the bus protocol and specify them in the modal �-calculus [24]. We then use the local model checker [4]

integrated in the CWB-NC for automatically validating the properties under consideration.

The remainder of this paper is organized as follows. The next section presents our process-algebraic

framework including the real-time process algebra CCSrt and the process algebra CCSdp with dynamic priority.

The one-to-one relationship between CCSdp and CCSrt semantics is established in Section 3. An overview

of the SCSI-2 bus and its protocol is given in Section 4, whereas Section 5 describes its modeling in our

language. Some properties of the bus protocol are formalized and checked for our model in Section 6. The

following section discusses our approach and compares it to related work. Section 8 contains our conclusions

and directions for future work. Finally, the complete model of the bus protocol can be found in the appendix.

2. Process-Algebraic Framework. In this section we introduce the process algebra CCSrt inspired

by [28] and develop the process algebra CCSdp, which has the same syntax but di�erent semantics. Whereas

CCSrt is an extension of CCS [27] in order to capture discrete quantitative timing aspects with respect to a

single, global clock, CCSdp extends CCS by a concept of dynamic priority.

2.1. Syntax of our Language. The syntax of CCSrt and CCSdp di�ers from CCS by associating delay

and priority values with actions, respectively. Moreover, we include the disabling operator [i, known from

LOTOS [5], which allows for a more compact notation of the bus-protocol model. Formally, let � be a

countable set of action labels or ports, not including the so-called internal or unobservable action � . With

every a 2 � we associate a complementary action a. Intuitively, an action a 2 � may be thought of as

representing the receipt of an input on port a, while a constitutes the deposit of an output on a. We de�ne

� =df fa j a 2 �g and take A to denote the set of all actions �[�[f�g. In what follows, we let a; b; : : : range

over � [� and �; �; : : : over A. Complementation is lifted to actions in � [�, also called visible actions,

by de�ning a =df a. As in CCS an action a communicates with its complement a to produce the internal

action � . In our syntax actions are associated with delay values, or priority values, taken from the set of

natural numbers N. More precisely, the notation � : k, where � 2 A and k 2 N, speci�es that action � is

ready for execution after a minimum delay of k time units or, respectively, that action � possesses (at most)

3

priority k. In the priority interpretation, smaller numbers encode higher priority values; so 0 represents the

highest priority. The syntax of our language is de�ned by the BNF

P ::= 0 j x j � :k:P j P + P j P [iP j P jP j P [f] j PnL j �x:P

where k 2 N, the mapping f : A ! A is a relabeling, L � A n f�g is a restriction set, and x is a variable

taken from some countable domain V . A relabeling f satis�es the properties f(�) = � and f(a) = f(a).

If f(�i) = �i for 1 � i � n and n 2 N, and f(�) = � for all � 6= �i, where 1 � i � n, we also write

[�1=�1; �2=�2; : : : ; �n=�n] for f . We adopt the usual de�nitions for free and bound variables, open and

closed terms, and guarded recursion, and refer to the closed and guarded terms as processes [27]. The

syntactic substitution of all free occurrences of variable x by term Q in term P is symbolized by P [Q=x],

and syntactic equality by �. Finally, we let P , ranged over by P;Q;R; : : : , denote the set of all processes.

2.2. Real-Time Semantics. This section introduces a real-time semantics to our language { in this

context referred to as CCSrt semantics { which explicitly represents timing behavior. Formally, the seman-

tics of a process is de�ned by a labeled transition system which contains explicit clock transitions { each

representing a delay of one time unit { as well as action transitions. With respect to clock transitions, the

operational semantics is set up such that processes willing to communicate with some process running in

parallel are able to wait until the communication partner is ready. However, as soon as it is available the

communication has to take place, i.e., further idling is prohibited. This assumption is usually referred to as

maximal progress assumption [29] or synchrony hypothesis [3] and employed in many successful speci�cation

languages, including Statecharts [19] and Esterel [3].

Formally, the labeled transition system for a process P is a four-tuple hP ;A[f1g; 7�!; P i where P is

the set of states, A[f1g is the alphabet satisfying 1 =2 A, 7�! is the transition relation, and P represents the

start state. The transition relation 7�!� P� (A[f1g)�P is de�ned in Tables 2.1 and 2.2 using operational

rules. For the sake of simplicity, let us use
 as a representative of A [f1g and write P

7�! P 0 instead of

hP;
; P 0i 2 7�!. We say that P may engage in transition
 and thereafter behave like process P 0. If
 � 1

we speak of a clock transition, otherwise of an action transition. Sometimes it is convenient to abbreviate

9P 0 2 P : P

7�! P 0 by P

7�!. In order to ensure maximal progress our semantics is set up in a way such that

P 6
1
7�! whenever P

�
7�!, i.e., clock transitions are prevented as long as P can engage in internal computation.

Table 2.1

Operational semantics for CCSrt { action transitions.

Act
��

� : 0:P
�
7�! P

Sum1
P

�
7�! P 0

P +Q
�
7�! P 0

Sum2
Q

�
7�! Q0

P +Q
�
7�! Q0

Rec
P [�x:P=x]

�
7�! P 0

�x:P
�
7�! P 0

Rel
P

�
7�! P 0

P [f]
f(�)
7�! P 0[f]

Dis1
P

�
7�! P 0

P [iQ
�
7�! P 0 [iQ

Dis2
Q

�
7�! Q0

P [iQ
�
7�! Q0

Res
P

�
7�! P 0

PnL
�
7�! P 0nL

� =2 L [L

Com1
P

�
7�! P 0

P jQ
�
7�! P 0jQ

Com2
Q

�
7�! Q0

P jQ
�
7�! P jQ0

Com3
P

a
7�! P 0 Q

a
7�! Q0

P jQ
�
7�! P 0jQ0

Intuitively, process � :k:P , where k > 0, may engage in a clock transition and then behave like process

� : (k � 1):P . Process � :0:P performs an �-transition to state P and, if � 6� � , it may also idle by performing

4

Table 2.2

Operational semantics for CCSrt { clock transitions.

tNil
��

0
1

7�! 0

tAct1
��

a : 0:P
1

7�! a : 0:P
tAct2

��

� :k:P
1

7�! � : (k � 1):P
k > 0

tSum
P

1
7�! P 0 Q

1
7�! Q0

P +Q
1

7�! P 0 +Q0
tDis

P
1

7�! P 0 Q
1

7�! Q0

P [iQ
1

7�! P 0 [iQ0
tCom

P
1

7�! P 0 Q
1

7�! Q0

P jQ
1

7�! P 0jQ0
P jQ 6

�
7�!

tRec
P [�x:P=x]

1
7�! P 0

�x:P
1

7�! P 0
tRel

P
1

7�! P 0

P [f]
1

7�! P 0[f]
tRes

P
1

7�! P 0

PnL
1

7�! P 0nL

a clock transition to itself. The summation operator + denotes non-deterministic choice, i.e., P + Q may

either behave like P or Q. However, time has to proceed equally on both sides of summation. Hence, P +Q

can engage in a clock transition and delay the choice if and only if both P and Q can engage in a clock tick.

Process P [iQ, involving the disabling operator [i, has the same semantics for clock transitions. For action

transitions it behaves like P and, additionally, it is capable of disabling P by engaging in Q. The restriction

operator nL prohibits the execution of actions in L[L and thus permits the scoping of actions. P [f] behaves

exactly as P where actions are renamed by the relabeling f . Process P jQ stands for the parallel composition

of P and Q according to an interleaving semantics with synchronous communication on complementary

actions resulting in the internal action � . Similar to summation and disabling, P and Q must synchronize

on clock transitions according to Rule (tCom). Its side condition ensures maximal progress, i.e., there is no

pending communication between P and Q. Finally, �x:P denotes a recursive process that is a distinguished

solution of the equation x = P . Our semantics satis�es the following properties.

Proposition 2.1. Let P; P 0; P 00 2 P. Then: (i) P 6
�
7�! implies P

1
7�! [idling], (ii) P

�
7�! implies

P 6
1
7�! [maximal progress], and (iii) P

1
7�! P 0 and P

1
7�! P 00 implies P 0 � P 00 [time determinacy].

The validity of Part (i) is a consequence of the idling capability of 0 and � : k:P , for k > 0 or � 6� � .

Properties (ii) and (iii) can be checked by inductions on the structure of P and on the maximum of the

depths of the derivation trees of P
1
7�! P 0 and P

1
7�! P 00, respectively. For CCSrt a semantic theory based

on bisimulation [27] has been developed. In this paper we restrict ourselves to strong bisimulation.

Definition 2.2 (Temporal Bisimulation). A symmetric relation R � P � P is called temporal

bisimulation if for every P 0 2 P, hP;Qi 2 R and
 2 A [f1g the following holds: P

7�! P 0 implies

9Q0: Q

7�! Q0 and hP 0; Q0i 2 R. We write P �rt Q if hP;Qi 2 R for some temporal bisimulation R.

The behavioral relation �rt, which can be shown to be an equivalence, enjoys several pleasant properties.

The most important one is the congruence property, which gives rise to compositional reasoning since it

allows the substitution of \equals for equals" inside larger systems. Note that temporal bisimulation requires

equivalent processes to match each others behavior exactly, including their timing behavior.

Unfortunately, CCSrt semantics unfolds delay values into sequences of elementary time units, thereby

creating many states. For example, process � :k:0 has k+2 states, namely 0 and � : l:0 where 0 � l � k (cf.

Figure 3.1 in Section 3). It would be much more e�cient if one could represent � :k:0 by a single transition

labeled by � : k leading to state 0. This compacti�cation in the representation of state spaces of real-time

5

systems can be implemented by viewing k as a priority value assigned to �. In other words, one may consider

the delay value k as the time stamp of action �. In the following we elaborate on this idea.

2.3. Dynamic-Priority Semantics. In order to formalize our intuition we present a new semantics for

our language that uses a notion of priority taken from [11], generalized to a multi-level priority-scheme [26].

We refer to our process algebra as CCSdp when interpreted with respect to the new semantics which, in

contrast to classical approaches to priority, dynamically adjusts priorities along transitions. Intuitively,

visible actions represent potential synchronizations that a process may be willing to engage in with its

environment. Given a choice between a synchronization on a high priority and one on a low priority, a

process should choose the former. Thus, high-priority � -actions pre-empt low-priority actions. The reason

that high-priority visible actions do not have pre-emptive power over low-priority actions is that visible

actions only indicate the potential of a synchronization, i.e., the potential of progress, whereas � -actions

describe complete synchronizations, i.e., real progress, in our model. Formally, the CCSdp semantics of a

process P is given by a labeled transition system hP ;A� N ;�!; P i. The presentation of the operational

rules de�ning the transition relation �! requires two auxiliary de�nitions.

Table 2.3

Potential initial action sets.

Ik(� : l:P) =df f� j l � kg Ik(�x:P) =df I
k(P [�x:P=x]) Ik(P [f]) =df ff(�) j � 2 Ik(P)g

Ik(P +Q) =df I
k(P) [Ik(Q) Ik(P [iQ) =df I

k(P) [Ik(Q) Ik(PnL) =df I
k(P) n (L [L)

Ik(P jQ) =df I
k(P) [Ik(Q) [f� j Ik(P) \ Ik(Q) 6= ;g

First, we introduce potential initial action sets which are de�ned to be the smallest set satisfying the

equations in Table 2.3. Intuitively, Ik(P) denotes the set of all potential initial actions of P having at least

priority k. For convenience, we abbreviate
S
fIl(P) j l < kg by I<k(P). If k > 0, it is easy to see that

I<k(P) = Ik�1(P). It is also important that the potential initial action sets are de�ned independently from

the transition relation �!, so �! is well-de�ned. The following proposition states that the de�nition of

the potential initial action sets is faithful for internal actions, which is fundamental for encoding our desired

notion of pre-emption. Its proof is analogue to one in [26] where similar de�nitions have been used for

encoding the same notion of pre-emption within a multi-level static-priority framework.

Proposition 2.3. For all P 2 P and � :k 2 A we have: � =2 I<k(P) if and only if 6 9l < k: P
� :l
�!.

Table 2.4

Priority adjustment function.

[0]k =df 0 ; [x]k =df x [P +Q]k =df [P]k + [Q]k [P [f]]k =df [P]k[f]

[� : l:P]k =df � : (l � k):P if l > k [P [iQ]k =df [P]k [i[Q]k [PnL]k =df [P]knL

[� : l:P]k =df � :0:P if l � k [P jQ]k =df [P]k j [Q]k [�x:P]k =df [P [�x:P=x]]k

As second auxiliary for presenting the transition relation we de�ne a priority adjustment function as

shown in Table 2.4. Intuitively, our semantics is set up in a way such that if one parallel component of a

process engages in an action with priority k, then the priority values of all initial actions at other parallel

6

components are decreased by k, i.e., these actions become \more important." Thus, the semantics of parallel

composition deploys a kind of fairness assumption, and priorities have a dynamic character. The priority

adjustment function applied to a process P and a natural number k, denoted as [P]k, returns a process

term which is \identical" to P except that the priorities of its initial actions are decreased by k. The phrase

\identical" does not mean syntactic equality but syntactic equality up to unfolding of recursion. Formally,

we let
:
= stand for the smallest congruence which contains � and satis�es the axiom �x:P

:
= P [�x:P=x].

Our semantics respects
:
=, i.e., P

:
= Q and P

�:k
�! P 0 implies Q

�:k
�! Q0 for some Q0 2 P satisfying P 0

:
= Q0.

In the remainder we use this fact silently and write P
�:k
�! P 0 if Q

�:k
�! Q0 for some Q

:
= P and Q0

:
= P 0.

Table 2.5

Operational semantics for CCSdp.

Act1
��

� :k:P
� :k
�! P

Sum1
P

�:k
�! P 0

P +Q
�:k
�! P 0

� =2 I<k(Q) Sum2
Q

�:k
�! Q0

P +Q
�:k
�! Q0

� =2 I<k(P)

Act2
��

a :k:P
a:l
�! P

l � k Dis1
P

�:k
�! P 0

P [iQ
�:k
�! P 0 [i[Q]k

� =2 I<k(Q) Dis2
Q

�:k
�! Q0

P [iQ
�:k
�! Q0

� =2 I<k(P)

Rec
P [�x:P=x]

�:k
�! P 0

�x:P
�:k
�! P 0

Com1
P

�:k
�! P 0

P jQ
�:k
�! P 0j[Q]k

� =2 I<k(P jQ) Com2
Q

�:k
�! Q0

P jQ
�:k
�! [P]kjQ0

� =2 I<k(P jQ)

Rel
P

�:k
�! P 0

P [f]
f(�):k
�! P 0[f]

Res
P

�:k
�! P 0

PnL
�:k
�! P 0nL

� =2 L [L Com3
P

a:k
�! P 0 Q

a:k
�! Q0

P jQ
� :k
�! P 0jQ0

� =2 I<k(P jQ)

The operational rules in Table 2.5 capture the following intuition. Process a :k:P may engage in action

a with priority l � k yielding process P . The side condition l � k re
ects that k does not specify an

exact priority but the maximal priority of the initial transition of a : k:P . It may also be interpreted as

lower-bound \timing constraint." Due to the notion of pre-emption incorporated in CCSdp, � :k:P may not

perform the � -transition with a lower priority than k. Process P +Q may behave like P (Q) if Q (P) does

not pre-empt it by being able to engage in a higher prioritized internal transition. Thus, pre-emption re
ects

implicit upper-bound \timing constraints." P jQ denotes the parallel composition of P and Q according to

an interleaving semantics with synchronized communication on complementary actions of P and Q, both

having the same priority k, which results in the internal action � that is attached with priority value k

(cf. Rule (Com3)). The interleaving Rules (Com1) and (Com2) encode the dynamic behavior of priority

values as explained above, with their side conditions implementing pre-emption. The operational semantics

for disabling, restriction, relabeling, and recursion is as expected. The following proposition, which can be

proved by structural induction, shows that our notion of pre-emption coincides with our intuition.

Proposition 2.4. For all P 2 P, � 2 A, and k 2 N satisfying P
�:k
�! we have � =2 I<k(P).

As for CCSrt, we may adapt a notion of strong bisimulation, referred to as prioritized bisimulation here.

Prioritized bisimulation is an equivalence that contains
:
= ; a property which will be used without mentioning.

Definition 2.5 (Prioritized Bisimulation). A symmetric relation R � P � P is called prioritized

bisimulation if for every P 0 2 P, hP;Qi 2 R, � 2 A, and k 2 N the following holds: P
�:k
�! P 0 implies

9Q0: Q
�:k
�! Q0 and hP 0; Q0i 2 R. We write P �dp Q if hP;Qi 2 R for some prioritized bisimulation R.

7

2.4. Implementing CCSdp and CCSrt Semantics. For both process algebras, CCSdp and CCSrt, front-

ends for the Concurrency Workbench of North Carolina (CWB-NC) [16] have been created by using the Process

Algebra Compiler (PAC) [13], a \meta-compiler" developed for interfacing the CWB-NC to new process algebras.

Whereas the implementation of CCSrt is straightforward, we needed some more e�ort regarding CCSdp. The

reason is that Rule (Act2) of CCSdp semantics gives rise to potentially in�nite-branching transition systems

since priority value l in its side condition ranges over all natural numbers greater or equal than k. Fortunately,

this problem can be eliminated for all practical purposes. One possibility is to provide an upper bound

upper re
ecting the maximal priority value of any action occurring in the process under consideration. The

validity of this solution stems from the fact that a higher priority value than upper has no e�ect on the

process' semantics since priority values cannot be adjusted to a value below zero. This idea is re�ned in our

implementation of CCSdp semantics as follows. Instead of choosing a value upper with respect to the overall

process, we determine this value with respect to the particular system state in which the process under

consideration is currently in. As a consequence, the number of transitions of a process according to CCSdp

semantics is always less than or equal to the number of transitions with respect to CCSrt semantics. Finally,

we want to point out that these solutions somehow touch on the compositionality of the implemented CCSdp

semantics. If a system is combined with another one having a greater upper priority value, additional system

behavior is possible. However, already computed parts of the semantics need not to be re-computed.

3. Relating CCSdp and CCSrt Semantics. In this section we show that CCSdp and CCSrt semantics are

closely related. The underlying intuition is best illustrated by a simple example dealing with the pre�xing

operator. Figure 3.1 depicts the dynamic-priority and real-time semantics of the process a : k:0. Both

transition systems intuitively re
ect that the process a :k:0 must at least delay k times before it may engage

in an a-transition. According to CCSrt semantics, this process consecutively engages in k time steps passing

the states a : (k � i):0, for 0 � i � k, before it may either continue idling in state a : 0:0 or engage in an

a-transition to the inaction process 0. Thus, time is explicitly part of states and made visible by clock

transitions each representing a step of one time unit. In contrast, CCSdp semantics encodes a delay of at

least k time units in transitions rather than in states. Hence, it just possesses the states a : k:0 and 0

connected via transitions labeled by a : l, for l � k. Although it seems at �rst sight that the price for saving

intermediate states is to be forced to deal with in�nite branching, an upper bound of l can be provided as

discussed in the previous section. In our example this upper bound is k itself, since a delay by more than

k time units only results in idling and does not enable new or disable existing system behavior. Therefore,

the dynamic-priority transition system of a :k:0 just consists of the two states a :k:0 and 0 and a symbolic

transition labeled by a :k, whereas the real-time transition system possesses k+2 states and k+2 transitions.

This simple example clearly suggests that CCSdp semantics results in much more compact models than CCSrt

semantics.

The following paragraphs aim at proving a one-to-one correspondence between the two semantics such

that CCSdp semantics can be understood as an e�cient encoding of CCSrt semantics. To this end, one

also needs to make sure that the notion of pre-emption employed in CCSdp re
ects the notion of maximal

progress adopted in CCSrt. Before making the relationship between both semantics precise we �rst state

an important lemma whose last part presents the connection between clock transitions and the priority

adjustment function. In this lemma, the symbol
1
7�!k stands for k consecutive clock transitions.

Lemma 3.1. For all P; P 0 2 P and all k; l 2 N the following holds: (i) [P]0
:
= P and [[P]l]k

:
= [P]k+l,

(ii) Ik([P]l) = Ik+l(P), and (iii) P
1
7�!kP 0 if and only if P 0

:
= [P]k and � =2 I<k(P).

8

...

a:k.0

0

a:(k+1)a:k a:(k+i)

a:k.0

a:(k-1).0

dynamic-priority semantics real-time semantics

1

1

1

a:0.0

0

a
1

1

Fig. 3.1. Relating CCSdp and CCSrt semantics.

Proof. Part (i) follows immediately from the de�nitions of the adjustment function and of
:
=. For the

other parts let P; P 0 2 P and k; l 2 N.

� Part (ii) is proved by induction on the structure of P .

1. P � 0: Ik([0]l) = Ik(0) = ; = Ik+l(0) by our de�nitions.

2. P � � :m:Q: Ik([� :m:Q]l)

(de�nition of [�]�) =

(
Ik(� : (m� l):Q) if m > l

Ik(� :0:Q) otherwise

(de�nition of I�(�) and k > 0) =

(
f�g if (m� l � k and m > l) or m � l

; otherwise

=

(
f�g if m � k + l

; otherwise

(de�nition of I�(�)) = Ik+l(� :m:Q)

3. P � Q1jQ2: Ik([Q1jQ2]
l)

(de�nition of [�]�) = Ik([Q1]
lj[Q2]

l)

(de�nition of I�(�)) = Ik([Q1]
l) [Ik([Q2]

l) [f� j Ik([Q1]
l) \ Ik([Q2]l) 6= ;g

(induction hypothesis) = Ik+l(Q1) [Ik+l(Q2) [f� j Ik+l(Q1) \ Ik+l(Q2) 6= ;g

(de�nition of I�(�)) = Ik+l(Q1jQ2)

The other cases are easier to establish than the ones above and, therefore, are omitted. As a simple

corollary, which is needed in the proof of Part (iii) and immediately follows from the de�nition of

potential initial action sets, one may conclude I<k([P]l) = I<k+l(P), whenever k > 0.

� We prove Part (iii) by induction on k. The case k = 0 is trivial. Therefore, we directly consider the

statement for k = 1. For the \only if"{direction one may observe that P
1
7�! P 0 implies P 6

�
7�! by

Proposition 2.1(ii), i.e., � =2 I<1(P), by Proposition 2.3. Thus, it remains to establish that P 0
:
= [P]1,

for which we use structural induction on P .

1. P � � :k:Q: � :k:Q
1
7�! P 0 implies k > 0 or (k = 0 and � 6� �) according to CCSrt semantics.

In the former case we have P 0 � � : (k � 1):Q
:
= [� :k:Q]1 by the de�nition of the adjustment

function. In the latter case we obtain P 0 � � :0:Q
:
= [� :k:Q]1, as desired.

2. P � Q1jQ2: Q1jQ2
1
7�! P 0 implies Q1

1
7�! Q01, Q2

1
7�! Q02, and P 0 � Q01jQ

0
2 for some

Q01; Q
0
2 2 P . By induction hypothesis we may conclude Q01

:
= [Q1]

1 and Q02
:
= [Q2]

1. Hence,

P 0 � Q01jQ
0
2

:
= [Q1]

1j[Q2]
1 � [Q1jQ2]

1 by the de�nition of the adjustment function.

9

The other cases follow by similar reasoning. For the \if"{direction let � =2 I<1(P), i.e., P 6
�
7�! by

Proposition 2.3. Hence, P
1
7�! P 0 for some P 0 2 P according to Proposition 2.1(i). Moreover, we

have P 0
:
= [P]1 by the \only if"{direction of this proof part.

For the induction step let k > 1. Then, we have P
1
7�! k+1P 0 if and only if P

1
7�! P 00

1
7�! kP 0 for

some P 00 2 P . By induction hypothesis and Part (iii) for k = 1 this is exactly the case if and only

if P 0
:
= [P 00]k, � =2 I<k(P 00), P 00

:
= [P]1, and � =2 I<1(P), i.e., P 0

:
= [P]k+1 and � =2 I<k+1(P) by

Parts (i) and (ii), respectively.

This �nishes the proof of the lemma.

Now, we are able to state and prove a main result.

Proposition 3.2 (One-to-one Correspondence). Let P; P 0 2 P and � : k 2 A � N. Then P
�:k
�! P 0 if

and only if 9P 00 2 P : P
1
7�!kP 00

�
7�! P 0.

Proof. Let P; P 0 2 P and k 2 N. According to Lemma 3.1(iii), it is su�cient to show that [P]k
�
7�! P 0

and � =2 I<k(P) if and only if P
�:k
�! P 0. The proof is done by induction on the structure of P .

1. P � 0: Here, our statement trivially holds since 0 cannot engage in any transition.

2. P � � : l:P 0: According to CCSrt semantics, [� : l:P 0]k
�
7�! P 0 is valid if [� : l:P 0]k

:
= � :0:P 0, which is

exactly the case if k � l. Since � =2 I<k(P) we know k = l if � � � . Hence, � : l:P 0
�:k
�! P 0 by CCSdp

semantics. Reversely, � : l:P 0
�:k
�! P 0 implies k � l, if � 6� � , and k = l, otherwise, according to

CCSdp semantics. Thus, [� : l:P 0]k � � :0:P 0 and � :0:P 0
�
7�! P 0 by the de�nitions of the adjustment

function and of CCSrt semantics. Finally, � =2 I<k(� : l:P 0) since � � � implies k = l.

3. P � Q1+Q2: By CCS
rt semantics, the de�nitions of the adjustment function and of potential initial

action sets, and Proposition 2.4 we obtain [Q1 +Q2]
k � [Q1]

k+[Q2]
k �
7�! P 0 and � =2 I<k(Q1 +Q2)

if and only if ([Q1]
k �
7�! P 0 or [Q2]

k �
7�! P 0) and � =2 I<k(Q1) [I<k(Q2). By induction hypothesis

and Proposition 2.4 this is exactly the case if (Q1
�:k
�! P 0 and � =2 I<k(Q2)) or (Q2

�:k
�! P 0 and

� =2 I<k(Q1)), which holds if and only if Q1 +Q2
�:k
�! P 0 according to CCSdp semantics.

4. P � Q1jQ2: Let [Q1jQ2]
k � [Q1]

kj[Q2]
k �
7�! P 0 (already exploiting the de�nition of the adjustment

function) and � =2 I<k(Q1jQ2). According to the semantics for parallel composition, we may split

this case into the following three sub-cases.

(a) [Q1]
k �
7�! Q0 for some Q0 2 P and P 0 � Q0j[Q2]

k. Since � =2 I<k(Q1jQ2) implies � =2 I<k(Q1) by

the de�nition of potential initial action sets, we may apply the induction hypothesis to conclude

Q1
�:k
�! Q0. This is exactly the case if Q1jQ2

�:k
�! Q0j[Q2]

k � P 0 according to CCSdp semantics

and the fact that � =2 I<k(Q1jQ2).

(b) [Q2]
k �
7�! Q0 for some Q0 2 P and P 0 � [Q1]

kjQ0. This case can be shown in a symmetric

fashion to the previous one.

(c) � � � , [Q1]
k a
7�! Q01, and [Q2]

k a
7�! Q02 for some a 2 A n f�g and Q01; Q

0
2 2 P such that

P 0 � Q01jQ
0
2. Because of the premise � =2 I<k(Q1jQ2) we know � =2 I<k(Q1) and � =2 I<k(Q2).

Thus, the induction hypothesis implies Q1
a:k
�! Q01 and Q2

a:k
�! Q02, and also � =2 I<k(Q1jQ2).

According to CCSdp semantics, this is equivalent to Q1jQ2
� :k
�! Q01jQ

0
2 � P 0, as desired.

The remaining cases are easier to establish and, therefore, are omitted.

This proposition explicitly re
ects our intuition of the meaning of a natural number attached to an action in

both calculi. Whereas in CCSrt we interpret � :k as the action � which is enabled after a delay of (at least)

k time units, the value k indicates the level of urgency of � in CCSdp.

10

3.1. Bisimulation Correspondence. The correspondence between CCSdp and CCSrt semantics re-

ected in Proposition 3.2 is the key for proving the next theorem.

Theorem 3.3 (Bisimulation Correspondence). Let P;Q 2 P. Then P �dp Q if and only if P �rt Q.

Proof. We �rst prove the \if"{direction by showing�rt to be a prioritized bisimulation. Let P; P
0; Q 2 P ,

� 2 A, and k 2 N satisfying P
�:k
�! P 0 . By Proposition 3.2 we may conclude the existence of some P 00 2 P

such that P
1
7�! kP 00

�
7�! P 0. Since P �rt Q there exist some Q0; Q00 2 P satisfying Q

1
7�! kQ00

�
7�! Q0,

P 00 �rt Q00, and P 0 �rt Q0, which can be formally derived by a straightforward induction on k and the

de�nition of �rt. Proposition 3.2 now implies Q
�:k
�! Q0, as desired. For the \only if"{direction it is

su�cient to show that Rt =df fh[P]k; [Q]ki j P �dp Q; � =2 I<k(P); � =2 I<k(Q); and k 2 Ng is a temporal

bisimulation. Note that hP;Qi 2 Rt by choosing k = 0 (cf. Lemma 3.1(i) and the fact that I<0(�) = ;). Let

h[P]k; [Q]ki 2 Rt for some arbitrary k 2 N, i.e., P �dp Q, � =2 I<k(P), and � =2 I<k(Q).

First, consider [P]k
�
7�! P 0 for some P 0 2 P . Because of � =2 I<k(P) we conclude P

1
7�!k [P]k

�
7�! P 0 by

Lemma 3.1(iii). Hence, P
�:k
�! P 0 according to Proposition 3.2. Since P �dp Q we know of the existence of

some Q0 2 P such that Q
�:k
�! Q0 and P 0 �dp Q

0. Now, we use Proposition 3.2 and Lemma 3.1(iii) again in

order to obtain [Q]k
�
7�! Q0. Moreover, h[P 0]0; [Q0]0i 2 Rt can be derived from P 0 �dp Q

0, as desired.

Second, let [P]k
1
7�! P 0 for some P 0 2 P . Hence, [P]k 6

�
7�! by Proposition 2.1(ii), i.e., � =2 I<1([P]k) =

I<k+1(P) by Proposition 2.3 and Lemma 3.1(iii), and P 0
:
= [P]k+1 by Lemmas 3.1(i) and 3.1(iii). From the

�rst case we know [Q]k 6
�
7�!, i.e., � =2 I<1([Q]k) = I<k+1(Q) according to Proposition 2.3 and Lemma 3.1(iii).

Now, Lemma 3.1(iii) is applicable, and [Q]k
1
7�! [[Q]k]1

:
= [Q]k+1 holds by Lemma 3.1(i). Moreover,

h[P]k+1; [Q]k+1i 2 Rt by the de�nition of Rt, which �nishes the proof.

As a consequence of this result, prioritized and temporal bisimulation possess the same algebraic properties.

Especially, we may conclude that prioritized bisimulation is a congruence.

3.2. Logical Correspondence. CCSdp and CCSrt semantics are logically related, too. This correspon-

dence can be formally established by using a variant of the modal �-calculus [24] as temporal logic. Its syntax

is de�ned by the following BNF, which uses a set of variables V� with X 2 V�.

� ::= tt j X j :� j � ^� j h� :ki� j �X:�

Formulas are also required to satisfy the following additional constraint: in �X:� every occurrence of X

in � must be inside an even number of negations. Moreover, we de�ne some dual operators: � =df :tt,

�1 _ �2 =df :(:�1 ^ :�2), [� :k]� =df :h� :ki(:�), and �X:� =df :�X:(:�[:X=X]), where [:X=X]

denotes the substitution of all free occurrences of X by :X . We also introduce the following abbreviations,

where L � A � N: hLi� =df

W
fh� :ki� j � :k 2 Lg, h�i� =df hA � N i�, h�Li� =df h(A� N) n Li�,

[L]1� =df �X:(� ^ [L]X), and hLi�� =df �X:(� _ hLiX). Finally, we let F denote the set of all formulas.

The semantics f[�]g of a �-calculus formula � is de�ned with respect to an environment � : V� �! 2P

which maps variables to sets of processes. Intuitively, f[�]g(�) denotes the set of all processes that satisfy �

under the environment �. Formally, the semantic mapping f[�]g : (F � E) �! 2P , where E stands for the set

of all environments, is inductively de�ned over the structure of formulas, as shown in Table 3.1. If � is a

closed formula, its semantics is independent of the environment. In this case, we simply write f[�]g instead

of f[�]g(�). We say that the process P satis�es property � if P 2 f[�]g. Intuitively, formula tt is satis�ed by

every process, and the Boolean operators are interpreted as usual. The formula h� :ki� is satis�ed by those

processes that have an � :k{successor for which � holds. Finally, �X:� stands for the least solution of the

11

Table 3.1

Semantics of the modal �-calculus.

f[tt]g(�) =df P f[�1 ^ �2]g(�) =df f[�1]g(�) \ f[�2]g(�)

f[X]g(�) =df �(X) f[h� :ki�]g(�) =df fP 2 P j 9P 0 2 P : P
�:k
�! P 0 and P 0 2 f[�]g(�)g

f[:�]g(�) =df P n f[�]g(�) f[�X:�]g(�) =df

T
fP 0 � P j f[�]g(�[P 0=X]) � P 0g

equation X = � with respect to the Boolean lattice where � is smaller than tt. On the basis of the above

de�nitions one can deduce that a process P satis�es [� :k]� if all its � :k-derivatives satisfy �, and it satis�es

[L]1� if along every process reachable from P via a sequence of transitions labeled with elements of L, the

formula � is valid. Similarly, hLi�� holds for a process if some sequence of transitions with labels drawn

from L leads to a process satisfying �. For CCSrt a version of the �-calculus can be obtained by de�ning the

semantics of h� :ki� as fP 2 P j 9P 0; P 00 2 P : P
1
7�!kP 00

�
7�! P 0 and P 0 2 f[�]g(�)g. As an important result,

processes satisfy the same formulas, independently if those are interpreted for CCSdp or CCSrt semantics.

Theorem 3.4 (Logical Correspondence). Let � 2 F and � 2 E. Then f[�]gdp(�) = f[�]grt(�).

Proof. The proof is done by induction on the structure of formula �. The induction base � � tt holds

trivially. In the following, we consider the case � � h� :ki	 of the induction step.

f[h� :ki]gdp(�)

(de�nition of f[�]gdp) = fP 2 P j 9P 0 2 P : P
�:k
�! P 0 and P 0 2 f[]gdp(�)g

(induction hypothesis) = fP 2 P j 9P 0 2 P : P
�:k
�! P 0 and P 0 2 f[]grt(�)g

(Proposition 3.2) = fP 2 P j 9P 0; P 00 2 P : P
1
7�!kP 00

�
7�! P 0 and P 0 2 f[]grt(�)g

(de�nition of f[�]grt) = f[h� :ki]grt(�)

The other cases of the induction step are straightforward.

Hence, properties of processes interpreted with respect to CCSdp semantics also hold in the CCSrt interpreta-

tion, and vice versa. It is worth noting that by leaving out the �xed point operator �X we obtain versions of

the so called Hennessy-Milner logic which characterizes bisimulation [27]. Since the logical characterizations

of our bisimulations are not of importance here, we do not investigate them further.

4. Case Study: The SCSI-2 Bus-Protocol. We demonstrate the utility of our approach to imple-

menting real-time semantics using dynamic priorities by a case study dealing with the bus protocol of the

widely-used Small Computer System Interface [1], or SCSI for short. The SCSI bus is designed to provide

an e�cient peer-to-peer I/O connection for peripheral devices such as disks, tapes, printers, etc. It usually

connects several of these devices with one host adapter which often resides on a computer's motherboard. In

contrast to the host adapter, peripherals are not attached directly to the bus but via controllers, also called

logical units (LUNs). Thus, LUNs provide a physical and logical interface between the bus and the periph-

erals. Conceptually, up to seven LUNs can be connected to one bus, and one LUN can support up to seven

peripherals. However, in practice most peripherals contain their own SCSI controller (cf. Figure 4.1). The

SCSI-2 bus-protocol implements the logics regulating how peripherals and the host adapter communicate

with each other on the bus. Communication on the SCSI bus is point-to-point, i.e., at any time either none

or exactly two LUNs may communicate among each other. For easy addressing, each LUN is assigned a �xed

12

SCSI id in form of a number ranging from zero to seven. Id 0 is reserved for the host adapter which is also,

conceptually, a LUN. Communication on the bus is organized by the use of eight signal lines whereas the

actual information, like messages, commands, data, and status information, are transferred over a data bus.

Host

adapter

ID0 (Motherboard)

Computer
Device

Con-

troller

ID1

Device

Con-

ID7

troller

Fig. 4.1. Typical SCSI con�guration.

DATA, STATUS,
BUS FREE ARBITRATION SELECTION MESSAGE

MESSAGE
COMMAND,

Fig. 4.2. Usual progression of the SCSI-2 bus-phases.

The SCSI-2 bus-protocol is organized in eight distinct phases: Bus Free, Arbitration, Selection,

Reselection, Command, Data, Status, and Message phase. At any given time, the SCSI bus is exactly in

one phase. The usual progression of phases is shown in Figure 4.2. During the Bus Free phase no device

is in possession of the bus, i.e., LUNs may request access. If more than one device competes for the bus in

order to initiate a communication, the one with the highest SCSI id is granted access. In the Arbitration

phase, every LUN that has posed a request determines if it has won the competition. All LUNs which lose may

compete for the bus again later, whereas the winner, also referred to as initiator, proceeds to the Selection

phase. In this phase the initiator tries to connect to the desired destination, called target. When the link

between initiator and target has been established, the so-called information transfer phases, including the

Command, the Data, the Status, and the Message phases are entered. In the Command phase the target may

request a command from the initiator. Data may be transferred between target and initiator in the Data

phase. During a Message phase information is exchanged between the initiator and the target concerning

the bus protocol itself. Finally, the Status phase is used to transfer status information to the initiator

upon completion of a command executed by the target. The key idea for accelerating communication on the

bus, which has signi�cantly contributed to the success of SCSI, is that the target can free the bus whenever

it receives a time-intensive command from the initiator. As soon as the execution of such a command is

�nished, the target competes for the bus in order to transmit the result to the former initiator. As a simple

example, one may think of the initiator as the host adapter, of the target as a hard disk, and of the command

as the request to read a certain block from that hard disk. Since accessing hard disks takes some time, the

bus can be used for other purposes until the requested block is found and its data is ready for transmission.

5. Modeling the SCSI-2 Bus-Protocol. In this section we model the SCSI-2 bus-protocol in our

language as implemented in the CWB-NC. Its syntax slightly departs from the one introduced in Section 2 by

writing nil for the inaction process 0, proc x = P for the term �x:P , and 'a:k for a :k. Moreover, we use

the notation �(obs) :k which may be interpreted as � :k in this section. Actions obs come into play in the

next section where they serve as \probes" for veri�cation purposes.

13

For modeling the SCSI-2 bus-protocol we have imposed some assumptions. First, we restrict ourselves to

modeling two LUNs, called LUN0 and LUN1, having id 0 and id 1, respectively. This is su�cient for dealing with

the aspects of the SCSI-2 bus-protocol we are interested in. Note that even in the situation of two LUNs there

exists competition for the bus. Moreover, we abstract from timeout procedures and from the contents of most

messages, commands, and data. These abstractions are justi�ed since they do not a�ect the conceptual parts

of the bus protocol's behavior. For example, the sole purpose of a timeout is to determine if a target is alive

or not. The contents of information sent over the bus, except from messages representing the completion of

some transmission, are only relevant for the device-speci�c part of LUNs but not for the bus protocol itself.

Additionally, the bus signals BSY (busy) and SEL (select) are wired-or signals in reality. However, we do not

need to model this \or"-behavior, since our model only deals with two LUNs, and just one LUN at a time can

assert the BSY or SEL signal. Finally, all quantitative timing information occurring in the model is measured

relative to a time unit of 5 ns, including arbitration delays (480 time units), bus clear delays (160 time units),

bus settle delays (80 time units), deskew delays (9 time units), and cable skew delays (9 time units).

The underlying structure of the bus protocol is explicitly re
ected in our model. Each LUN connected

to the bus is modeled as a separate parallel component containing models of the di�erent bus phases as

discussed in the previous section. The logical behavior of the bus protocol is implemented by bus signals.

Each signal physically consists of a wire which we model as a separate process similar to a global Boolean

variable. Note that signal delays are not modeled in the wires but in the operations used for transmitting

information over the SCSI bus. Since we abstract away the content of most information, we do not need to

model each bit of the data bus. Hence, arbitration is modeled via a global variable which stores the highest

id of all LUNs requesting access to the bus. Accordingly, our model, called SCSIBus, consists of the parallel

composition of both LUNs, and the BusSignals, including the regular signals and the data path. Formally,

proc SCSIBus = (LUN0 | BusSignals | LUN1) \ Restriction

where Restriction contains all actions that are internal to the protocol, i.e., those concerned with set-

ting/releasing signals, requesting signal status, and placing/reading information on/from the data bus.

5.1. Modeling the Bus Signals and the Data Bus. Conceptually, each bus signal is modeled as a

Boolean variable which is either true (signal on) or false (signal o�). Thus, the processes representing the

signals BSY (busy), SEL (select), C/D (command/data), I/O (input/output), MSG (message), ATN (attention),

REQ (request), and ACK (acknowledgment) are generically created by relabeling the actions of the process Off

(cf. Table 5.1). Using the ports set and rel one can set or release the signal and, hereby, switch the state

to On and Off, respectively. Actions 'off ('on) indicate that the signal is currently in state Off (On). Note

that the atomicity of actions in process algebras guarantees that con
icts, arising by setting several signals

simultaneously, are avoided.

In the following, we abstract away the contents of most messages. Only the distinguished messages

disconnect and complete are explicitly considered since they require to exit the information transfer phases

and to switch to the initial state of the LUN. Accordingly, we may model the data bus as a variable which

can store and read out information (actions placeXXX and readXXX, respectively). The labels obsXXX are

used to record the events of placing and reading messages on the bus.

For modeling arbitration we introduce the process Arbitrator which models a variable that stores the

value of the highest id of all LUNs which compete for the bus. The situation in which no LUN wants to access

the bus is captured by a special \unde�ned" state. Accordingly, the process Arbitrator possesses three

14

Table 5.1

Model of the bus signals, the data bus, and the arbitration variable.

proc BusSignals = DataBus

| Arbitrator

| Off[setBSY/set,relBSY/rel,isBSY/on,noBSY/off]

| Off[setSEL/set,relSEL/rel,isSEL/on,noSEL/off]

| ...

proc Off = 'off:0.Off + set:0.On + rel:0.Off

proc On = 'on:0.On + set:0.On + rel:0.Off

proc DataBus = DataBus' [> release(obsrelease):0.DataBus

proc DataBus' = placemsgIn(obsplace):0.'readmsgIn(obsread):0.DataBus'

+ placemsgOut(obsplace):0.'readmsgOut(obsread):0.DataBus'

+ placefinished(obsplace):0.'readfinished(obsread):0.DataBus'

+ placedata(obsplace):0.'readdata(obsread):0.DataBus'

+ placecmd(obsplace):0.'readcmd(obsread):0.DataBus'

+ placestatus(obsplace):0.'readstatus(obsread):0.DataBus'

+ sentdisconnect(obssentdiscon):0.'readdisconnect(obsreaddiscon):0.DataBus'

+ sentcomplete(obssentcomplete):0.'readcomplete(obsreadcomplete):0.DataBus'

+ writetarget0(obswritet0):0.'readtarget0(obsreadt0):0.DataBus'

+ writetarget1(obswritet1):0.'readtarget1(obsreadt1):0.DataBus'

proc Arbitrator = Undef [> clear:0.Arbitrator

proc Undef = setid0:0.Id0 + setid1:0.Id1 + 'noid0:0.Undef + 'noid1:0.Undef

proc Id0 = setid0:0.Id0 + setid1:0.Id1 + 'isid0:0.Id0 + 'noid1:0.Id0

proc Id1 = setid0:0.Id1 + setid1:0.Id1 + 'noid0:0.Id1 + 'isid1:0.Id1

states as shown in Table 5.1, called Undef, Id0, and Id1, respectively. One may set the variable to state

Idk via port setidk whenever the current state of Arbitrator is either Undef or Idj for j � k. In other

words, the variable always maintains its maximum value. However, it may be reset to its initial state Undef

via port clear. In reality, the LUNs that want to compete for access broadcast their id on the data bus.

Before acquiring the bus the LUN has to check if a higher id than its own is asserted. Modeling this technique

one-to-one requires to implement the n-bit wide data bus, where n corresponds to the maximal number of

LUNs attached to the bus. This induces a complexity of 2n states, compared to n+1 states by our technique.

5.2. Modeling the Bus Phases for Connection Establishment. Let us focus on modeling the

logical characteristics of the SCSI-2 bus-protocol (see Section 6 of [1]) for the initial bus phases handling

connection establishment. In the Bus Free phase, no device is in possession of the bus; hence it is available

for arbitration. The SCSI bus is de�ned to be in the Bus Free phase as soon as the signals SEL and BSY

have been o� for at least a bus settle delay. Accordingly, the process BusFree0 of LUN0 detects the Bus Free

phase when the actions isBSY and isSEL are absent for 80 time units (cf. Table 5.2). If one of the actions

isBSY or isSEL is observed, the bus is occupied and LUN0 returns to the start state. Otherwise, if the bus

is free, the logical unit asserts the BSY signal (action 'setBSY) and sets the arbitration variable accordingly

(action 'setid0), before it performs an arbitration delay and switches to the Arbitration phase.

15

Table 5.2

Bus Free, Arbitration, and Selection phase.

proc LUN0 = t(start0):9.'relIO:0.(BusFree0 + GetSelected0) + t:9.LUN0

+ t(start0):9.'setIO(obs_setIO):0.(BusFree0 + GetSelected0) + GetSelected0

proc BusFree0 = t(busfree):80.'setBSY(obs_setBSY):80.'setid0:0.Arbitrate0

+ isSEL(obs_isSEL):0.LUN0 + isBSY(obs_isBSY):0.LUN0

proc Arbitrate0 = noid1(obs_winner_id0):480.'setSEL(obs_setSEL):0.Selection0

+ isid1(obs_winner_id1):480.LUN0

proc Selection0 = 'writetarget1:240.'setATN:9.'relBSY(obs_relBSY):18.isBSY:80.

'relSEL(obs_relSEL):9.t(begin_ITP):0.(noIO:0.Initiator0 + isIO:0.Target0)

proc GetSelected0 = isATN:0.(isSEL:0.noBSY:0.readtarget0:0.'setBSY(obs_setBSY):0.'release:0.

'clear:0.noSEL:0.(noIO:0.Target0 + isIO:0.Initiator0)

+ noSEL:0.LUN0)

proc Initiator0 = H0 [> noBSY(obs_noBSY):0.'relATN:0.LUN0

proc H0 = t:9.'setATN(obs_setATN):9.H0

+ isREQ(obs_isREQ):9.(noMSG:0.(noCD:0.(noIO:0.DataOutI0 + isIO:0.DataInI0)

+ isCD:0.(noIO:0.CommandI0 + isIO:0.StatusI0))

+ isMSG:0.isCD:0.(noIO:0.MsgOutI0 + isIO:0.MsgInI0))

proc Target0 = (noIO:0.MsgOutT0 + isIO:0.'relATN:0.MsgInT0) [> noBSY:0.'relATN:0.LUN0

In the Arbitration phase a LUN, which competes for access to the bus, looks up if it has won the

arbitration by checking whether no device having a higher id has asserted its id on the bus. Before the

winner proceeds to the Selection phase, it asserts the SEL signal. All LUNs that have lost arbitration

return to their initial states. The models of the Arbitration phase as well as of the Selection phase are

presented in Table 5.2 for LUN0; the model of LUN1 is similar although the behaviors of LUN0 and LUN1

are not completely symmetric in the Arbitration phase. The asymmetries arise from the di�erent priority

values assigned to both devices. In the Arbitration phase, LUN0 has to check if LUN1 has set its id on the

bus. If so, LUN0 has lost arbitration. However, LUN1 does not need to check if LUN0 has set its id on the bus

since LUN0 is assigned to the lower SCSI id. Moreover, since we are assuming only two devices, there is no

necessity for LUN1 to check any SCSI id asserted on the bus.

The Selection phase is distinguished from the Reselection phase by the de-asserted I/O signal. In

the Selection phase the winning LUN, the initiator, tries to connect to the desired destination, the target,

which is the logical unit LUN1 in the case of Selection0. Therefore, it writes the id of the target on the

data bus (action 'writetarget1) and asserts the ATN signal to force each device to check if it is the desired

target. The initiator then waits for some deskew delays and releases the BSY signal. After a short delay

it looks for a response from the target. If the BSY signal is asserted, the target has responded and taken

over control of the bus protocol. In this case the initiator releases the SEL signal (action 'relSEL) and then

behaves as Initiator0, or as Target0 in case of the Reselection phase. If the ATN signal is asserted, each

device veri�es if the bus protocol is in the Selection or Reselection phase (cf. process GetSelected0).

Therefore, it checks the SEL signal (action isSEL) and waits until the initiator releases the BSY signal (action

16

Table 5.3

Command phase.

proc CommandI0 = isREQ:0.('placecmd:0.'setACK:9.noREQ:0.'release:0.'relACK:0.CommandI0

+ 'placefinished:0.'setACK:9.noREQ:0.'release:0.'relACK:0.H0)

proc CommandT0 = 'relMSG:0.'setCD:0.'relIO(begin_Command):0.t(begin_Phase):0.CommandT0'

proc CommandT0' = 'setREQ:0.isACK(obs_isACK):0.

(readcmd:0.'relREQ(obs_relREQ):0.noACK:0.CommandT0'

+ readfinished:0.'relREQ(obs_relREQ):0.noACK:0.t(end_Phase):0.

(MsgOutT0 + MsgInT0 + DataOutT0 + DataInT0 + StatusT0))

'relBSY). Then it asserts the BSY signal (action 'setBSY), releases the data bus (action 'release), and

re-initializes the arbitration variable (action 'clear) before behaving as Target0 or Initiator0.

After the Arbitration and (Re)Selection phases the target { the master of the bus protocol { proceeds

to the MessageOut or MessageIn phase depending on whether it has been selected as target or whether it

wants to re-connect to a former initiator, as indicated by the status of the IO signal (cf. Table 5.2). The

initiator { the slave of the bus protocol { continuously checks the status of the signals MSG, C/D, and I/O in

order to determine the next phase selected by the target. Moreover, it may indicate its wish to proceed to the

MessageOut phase by asserting the ATN signal (action 'setATN). Finally, upon detection of the de-assertion

of the BSY signal (action noBSY) caused by the target's expected or unexpected release of the SCSI bus, the

initiator de-asserts the ATN signal (action 'relATN) and returns to its initial state.

5.3. Modeling the Information Transfer Phases. The processes Target0 and Initiator0 initiate

the Information Transfer Phases (ITP) which subsume the Command, Data, Status, and Message phases.

In those phases, information is exchanged between the initiator and the target. The Data and the Message

phases are further divided in DataIn, DataOut, MessageIn, and MessageOut phases according to the direction

of information
ow. The \In" phases are concerned with transferring information from the target to the

initiator whereas the \Out" phases are concerned with transferring information in the other direction. The

information transfer takes place using a byte-wise handshake mechanism. In the following, we only explain

the Command phase and its modeling (cf. Table 5.3). The complete model can be found in the appendix.

The Command phase is entered if the target intends to request a command from the initiator. The target

indicates the Command phase by de-asserting the MSG and I/O signals and asserting the C/D signal. After

waiting for a deskew delay the target requests a command from the initiator by setting the REQ signal

(action 'setREQ). In the meantime, the initiator detects that the target has switched to the Command phase

by observing the status of the MSG, C/D, and I/O signals (cf. process H0 in Table 5.2). Upon detection of

the asserted REQ signal (action isREQ) the initiator places the �rst byte of the command on the data bus

(action 'placecmd), waits for a deskew delay, and asserts the ACK signal (action 'setACK). After the target

detects the asserted ACK signal (action isACK) it reads the command from the data bus (action readcmd) and

releases the REQ signal (action 'relREQ). At this point the handshake procedure for receiving (the �rst byte

of) the command is completed. Now, the initiator may release the data bus (action 'release) and the ACK

signal (action 'relACK). If a command is longer than one byte, the bus may remain in the Command phase,

and the handshake mechanism may be repeated, until the message �nished (action readfinished) has been

transferred. Note that in the real-world protocol the length of a command is encoded in its �rst byte.

17

6. Verifying the Bus-Protocol. In this section we specify several safety and liveness properties,

which our model is expected to satisfy, in the modal �-calculus [24], and verify them by employing the

local model-checker [4] integrated in the CWB-NC. The one-to-one correspondence between CCSdp and CCSrt

semantics ensures that the properties, once being veri�ed for the CCSdp model, hold for the CCSrt model,

too. In order to construct the state spaces of our model we have run the CWB-NC on a SUN SPARC 20

workstation. Whereas the model has 62 400 states and 65 624 transitions according to CCSrt semantics, it

possesses only 8 391 states and 14 356 transitions with respect to CCSdp semantics. This drastic saving in

state space emphasizes the utility of using dynamic priorities for implementing discrete real-time semantics.

6.1. Properties of Interest. The following desired requirements of the SCSI-2 bus-protocol are ex-

tracted from the o�cial ANSI document [1].

� Property 1: All bus phases are always reachable. This implies that the model is free of deadlocks.

� Property 2: Whenever a bus phase is entered, it is eventually exited.

� Property 3: The signals REQ and ACK do not change between two information transfer phases.

� Property 4: The signal BSY is on and the signal SEL is o� during the information transfer phases.

� Property 5: Whenever a device sends a message, it is eventually received by the intended LUN.

� Property 6: Whenever the ATN signal is set, the bus eventually enters the MessageOut phase.

Note that the properties describe the functional behavior of the SCSI-2 bus-protocol rather than explicit real-

time issues concerned with hard deadlines or response times. Therefore, we may abstract from delay/priority

values in �-calculus formulas by replacing the operators h� :ki introduced in Section 3.2 by h�i. Semantically,

we de�ne f[h�i�]grt(�) =df fP 2 P j 9P 0; P 00 2 P : P
1
7�! �P 00

�
7�! P 0 and P 0 2 f[�]grt(�)g as well as

f[h�i�]gdp(�) =df fP 2 P j 9P 0 2 P ; k 2 N: P
�:k
�! P 0 and P 0 2 f[�]gdp(�)g. An adaptation of Theorem 3.4

can easily be shown to hold for the modi�ed temporal logics, too. Therefore, we can verify our properties

of the SCSI-2 bus-protocol within the more compact CCSdp model and conclude that these are also valid

for the CCSrt model. For notational convenience we introduce the following meta-formulas, where �; � 2 A,

L � A, and � 2 F .

between(�; �;�) =df �X:[�](�Y:(� ^ [�]X ^ [��]Y)) ^ [��]X

fair-follows(�; �; L;�) =df �X:[�](�Y:�Z:(� ^ [�]X ^ [L]Y ^ [�(f�g [L)]Z)) ^ [��]X

The meta-formula between(�; �;�) states the following. On every path it is always the case that after �, the

formula � is true at every state until � is seen. Note that � need not occur after � since � only releases the

requirement that � be true at every state. The meta-formula fair-follows(�; �; L;�) encodes that on every

path it is always the case that after � is seen, either � is always true until � is seen or � is always true, and

an action from L occurs in�nitely often on the path. Note that on paths on which actions from L do occur

in�nitely often, action � has to appear eventually. Without this notion of fairness, which we use to encode,

e.g., that messages transferred over the SCSI bus have �nite length, some properties cannot be validated.

Unfortunately, CCSdp and CCSrt turn every visible action a or a into the internal action � when commu-

nicating on port a. However, in order to prove any interesting property except deadlock, we have to observe

certain actions of the system, e.g., those modeling the assertion and de-assertion of bus signals. Therefore,

we attach to some actions a (either the input or the output action belonging to channel a) and the inter-

nal action � a visible action or probe o, thus leading to a complex action a(o), a(o), or �(o), respectively.

Whenever a transition labeled by a(o) (a(o)) synchronizes with a transition labeled by a (a), the resulting

� is annotated by o, i.e., �(o) is produced. Hence, a communication on port a is immediately observed by

18

probe o, as intended. Our model includes (i) the probes begin Phase and end Phase marking the beginning

and end of each information transfer phase, respectively, (ii) the probes begin ph signaling the beginning

of some particular phase ph, (iii) the probes obs place and obs read observing the writing and reading of

information on/from the data bus, respectively, and (iv) the probes obs setSIG and obs relSIG indicating

the assertion and de-assertion of some signal SIG, respectively. Now, the above properties can be formalized.

� Property 1: This property ensures that the model does not possess undesired livelocks, i.e., for each

bus phase ph we consider the formula [�]1h�i�(hbegin phitt).

� Property 2: We have to check for every path that probe begin Phase is eventually followed by probe

end Phase before another begin Phase is observed.

fair-follows(begin Phase; end Phase; fobs setATNg; h�itt) :

The fairness constraint ensures that the initiator does not ignore the target's wish to enter a new

phase forever by continuously asserting the ATN signal.

� Property 3: We encode that on all paths the probes obs setREQ, obs relREQ, obs setACK, and

obs relACK do not occur between end Phase and begin Phase.

between(end Phase; begin Phase; [obs setREQ; obs relREQ; obs setACK; obs relACK]�) :

� Property 4: This formalization can be done along the lines of the one of Property 3.

between(begin Phase; end Phase; [obs setBSY; obs relBSY; obs setSEL; obs relSEL]�) :

� Property 5: Here, one has to encode that obs place is always followed by obs read. The incorpo-

rated fairness constraint corresponds to the one in Property 2.

fair follows(obs place; obs read; fobs setATNg; [obs place]�) :

� Property 6: We have to formalize that every probe obs setATN is always eventually followed by a

probe begin MsgOut. Note that this property does not require any fairness assumption.

fair follows(obs setATN; begin MsgOut; ;; [obs setATN]�) :

6.2. Veri�cation Results. We were able to validate each property in our model in no more than two

minutes when running the CWB-NC on a SUN SPARC 20 workstation. The model checker we used is a local

model checker for a fragment of the modal �-calculus [4]. Applying a local model checker in contrast to a

global one remarkably speeds-up the task of veri�cation during the initial modeling attempts. In fact, the

modeling of the SCSI-2 bus-protocol was done in several stages. At early modeling stages the model checker

invalidated most properties immediately. The encountered errors ranged from missed fairness constraints to

wrong timing information and were identi�ed by examining the diagnostic information { displayed in form

of failure traces { as provided by the model checker. During the process of veri�cation, we also realized that

the timing constraints of the bus protocol are not only imposed for avoiding wire glitches but also in order to

implement necessary synchronization constraints during the initial bus phases. Without these constraints,

two LUNs may gain access to the bus for arbitration which leads to a deadlock. This emphasizes the necessity

of dealing with real-time constraints in reactive systems, even if explicit real-time behavior is not of interest.

19

7. Discussion and Related Work. One may wonder why CCSdp semantics does not consider actions

with minimal delays or priority values as labels of transitions only. In particular, one can avoid the side

condition of Rule (Act2) by allowing communication on di�erent priority levels. The reason that we have

not followed this approach is that it imposes an unsound abstraction for CCSrt semantics. As a simple

example consider process P =df (a :1:b :0:0 j b :1:0+ c :2:0)nfbg. According to the modi�ed CCSdp semantics,

P can engage in an a-transition with priority 1 to process (b : 0:0 j b : 0:0 + c : 1:0)nfbg. Hence, after an

a-transition a c-transition is always pre-empted since a communication on b with priority 0 is pending.

According to the original CCSdp semantics, however, P may also engage in an a-transition with priority 2 to

(b : 0:0 j b : 0:0+ c : 0:0)nfbg. Thus, there exists a path starting with an a-transition, after which a c may be

observed. Cutting o� this path changes the behavior of P , whence the modi�ed CCSdp semantics is incorrect.

Regarding related work, a formal relationship between a quantitative real-time process algebra and

a process algebra with static priority, adapted from [11], is established by Je�rey in [23]. Je�rey also

translates real-time to priority based on the idea of time stamping and presents a semantic correspondence

based on bisimulation. In contrast to CCSrt semantics, a process modeled in Je�rey's framework may either

immediately engage in an action or idle forever. However, this semantics does not re
ect our intuition about

the behavior of reactive systems, i.e., a process should wait until a desired communication partner becomes

available instead of engaging in a \livelock." It is only because of this design decision that Je�rey does

not need to choose a dynamic-priority framework. In [6] a variant of CCSR [7], referred to as CCSR92,

is introduced. Since CCSR focuses on specifying and verifying concurrent real-time systems, an ability of

capturing scheduling behavior is needed. Consequently, a notion of dynamic priority, such as occurs in

priority-inheritance and earliest-deadline-�rst scheduling algorithms, is adopted for CCSR92. In [6] dynamic

priorities are given as a function of the history of the system under consideration. Accordingly, the operational

semantics of CCSR92 is re-de�ned to include historical contexts. The authors show that dynamic priorities

do not always lead to a compositional semantics and give a su�cient condition that ensures compositionality.

8. Conclusions and Future Work. We introduced the process algebra CCSdp with dynamic priority

whose semantics corresponds one-to-one to the discrete quantitative real-time semantics of CCSrt. Its utility

stems from the fact CCSdp semantics yields signi�cantly more compact models than CCSrt semantics without

abstracting away any aspects of real-time. Thus, CCSdp provides a means for e�ciently implementing real-

time semantics. The compactness of models can be improved further if one is not interested in verifying

properties involving quantitative time and in the semantics' compositionality. In this case a CCSdp model

may be minimized according to standard bisimulation after ignoring the priority values in the labels. We

implemented CCSdp and CCSrt in the Concurrency Workbench of North Carolina which we used to formally

model and reason about the SCSI-2 bus-protocol. The size of our model is about an order of magnitude

smaller when constructed with CCSdp instead of CCSrt semantics and can be handled easily within the

Workbench. In addition, we speci�ed several desired properties of the bus protocol in the modal �-calculus

and validated them by using model checking. Regarding future work, the SCSI-2 bus-protocol should be

modeled in more detail and, thereby, enable the veri�cation of additional interesting properties.

REFERENCES

[1] American National Standard Institute, ANSI X3.131{1994, Information Systems | Small Com-

puter Systems Interface{2, ANSI, 1994.

20

[2] J. Baeten, ed., Applications of Process Algebra, Vol. 17 of Cambridge Tracts in Theoretical Computer

Science, Cambridge University Press, Cambridge, UK, 1990.

[3] G. Berry and G. Gonthier, The ESTEREL synchronous programming language: Design, semantics,

implementation, Sci. Comput. Programming, 19 (1992), pp. 87{152.

[4] G. Bhat, Tableau-based Approaches to Model Checking, Ph.D. thesis, North Carolina State University,

Raleigh, NC, USA, December 1997.

[5] T. Bolognesi and E. Brinksma, Introduction to the ISO speci�cation language LOTOS, Computer

Networks and ISDN Systems, 14 (1987), pp. 25{59.

[6] P. Br�emond-Gr�egoire, S. Davidson, and I. Lee, CCSR92: Calculus for communicating shared

resources with dynamic priorities, in First North American Process Algebra Workshop, P. Pu-

rushothaman and A. Zwarico, eds., Workshops in Computing, Stony Brook, NY, USA, August

1992, Springer-Verlag, pp. 65{85.

[7] P. Br�emonde-Gr�egoire, I. Lee, and R. Gerber, A process algebra of communicating shared re-

sources with dense time and priorities, Theoretical Computer Science, 189 (1997), pp. 179{219.

[8] E. Brinksma, W. Cleaveland, K. Larsen, T. Margaria, and B. Steffen, eds., First Interna-

tional Workshop on Tools and Algorithms for the Construction and Analysis of Systems TACAS '95,

Vol. 1019 of Lecture Notes in Computer Science, Aarhus, Denmark, May 1995, Springer-Verlag.

[9] J. Camilleri and G. Winskel, CCS with priority choice, Information and Computation, 116 (1995),

pp. 26{37.

[10] E. Clarke, E. Emerson, and A. Sistla, Automatic veri�cation of �nite-state concurrent systems

using temporal logic speci�cations, ACM Transactions on Programming Languages and Systems, 8

(1986), pp. 244{263.

[11] R. Cleaveland and M. Hennessy, Priorities in process algebra, Information and Computation, 87

(1990), pp. 58{77.

[12] R. Cleaveland, G. L�uttgen, and V. Natarajan, Priority in process algebra, in Handbook of

Process Algebra, J. Bergstra, A. Ponse, and S. Smolka, eds., Elsevier, 1999. To appear.

[13] R. Cleaveland, E. Madelaine, and S. Sims, Generating front-ends for veri�cation tools, in

Brinksma et al. [8], pp. 153{173.

[14] R. Cleaveland, V. Natarajan, S. Sims, and G. L�uttgen, Modeling and verifying distributed

systems using priorities: A case study, Software{Concepts and Tools, 17 (1996), pp. 50{62.

[15] R. Cleaveland, J. Parrow, and B. Steffen, The Concurrency Workbench: A semantics-based

tool for the veri�cation of �nite-state systems, ACM Transactions on Programming Languages and

Systems, 15 (1993), pp. 36{72.

[16] R. Cleaveland and S. Sims, The NCSU Concurrency Workbench, in Computer Aided Veri�cation

(CAV '96), R. Alur and T. Henzinger, eds., Vol. 1102 of Lecture Notes in Computer Science, New

Brunswick, NJ, USA, July 1996, Springer-Verlag, pp. 394{397.

[17] W. Elseaidy, J. Baugh, and R. Cleaveland, Veri�cation of an active control system using temporal

process algebra, Engineering with Computers, 12 (1996), pp. 46{61.

[18] J. Gulmann, J. Jensen, M. J�rgensen, N. Klarlund, T. Rauhe, and A. Sandholm, Mona:

Monadic second-order logic in practice, in Brinksma et al. [8], pp. 58{73.

[19] D. Harel, Statecharts: A visual formalism for complex systems, Sci. Comput. Programming, 8 (1987),

pp. 231{274.

[20] T. Henzinger, P.-H. Ho, and H. Wong-Toi, HyTech: A model checker for hybrid systems, Software

21

Tools for Technology Transfer, 1 (1997), pp. 110{122.

[21] C. Hoare, Communicating Sequential Processes, Prentice-Hall, London, UK, 1985.

[22] G. Holzmann, Design and Validation of Computer Protocols, Prentice-Hall, 1991.

[23] A. Jeffrey, Translating timed process algebra into prioritized process algebra, in Proceedings of Sympo-

sium on Real-Time and Fault-Tolerant Systems (FTRTFT '92), J. Vytopil, ed., Vol. 571 of Lecture

Notes in Computer Science, Nijmegen, The Netherlands, January 1992, Springer-Verlag, pp. 493{

506.

[24] D. Kozen, Results on the propositional �-calculus, Theoretical Computer Science, 27 (1983), pp. 333{

354.

[25] K. Larsen, P. Pettersson, and W. Yi, UPPAAL in a nutshell, Software Tools for Technology

Transfer, 1 (1997).

[26] G. L�uttgen, Pre-emptive Modeling of Concurrent and Distributed Systems, Ph.D. thesis, University

of Passau, Germany, May 1998. Published by Shaker Verlag, Aachen, Germany.

[27] R. Milner, Communication and Concurrency, Prentice-Hall, London, UK, 1989.

[28] F. Moller and C. Tofts, A temporal calculus of communicating systems, in CONCUR '90 (Con-

currency Theory), J. Baeten and J. Klop, eds., Vol. 458 of Lecture Notes in Computer Science,

Amsterdam, The Netherlands, August 1990, Springer-Verlag, pp. 401{415.

[29] W. Yi, CCS + time = an interleaving model for real time systems, in Automata, Languages and

Programming (ICALP '91), J. L. Albert, B. Monien, and M. R. Artalejo, eds., Vol. 510 of Lecture

Notes in Computer Science, Madrid, Spain, July 1991, Springer-Verlag, pp. 217{228.

Appendix A. Complete Model of the Bus Protocol.

proc SCSIBus = (LUN0 | LUN1 | BusSignals) \{

setBSY, relBSY, isBSY, noBSY, setSEL, relSEL, isSEL, noSEL,

setCD, relCD, isCD, noCD, setIO, relIO, isIO, noIO,

setMSG, relMSG, isMSG, noMSG, setATN, relATN, isATN, noATN,

setREQ, relREQ, isREQ, noREQ, setACK, relACK, isACK, noACK,

placemsgIn, readmsgIn, placemsgOut, readmsgOut,

placecmd, readcmd, placefinished, readfinished,

placedata, readdata, placestatus, readstatus,

sentdisconnect, readdisconnect, sentcomplete, readcomplete,

writetarget0, readtarget0, writetarget1, readtarget1,

release, setid0, setid1, noid0,

noid1, isid0, isid1, clear

}

*--------

* LUN0

*--------

proc LUN0 = t(start0):9.'relIO:0.(BusFree0 + GetSelected0)

+ t(start0):9.'setIO(obs_setIO):0.(BusFree0 + GetSelected0)

+ t:9.LUN0 + GetSelected0

22

proc GetSelected0 = isATN:0.(isSEL:0.noBSY:0.readtarget0:0.'setBSY(obs_setBSY):0.'release:0.

'clear:0.noSEL:0.(noIO:0.Target0 + isIO:0.Initiator0)

+ noSEL:0.LUN0

)

* BusFree Phase

proc BusFree0 = t(busfree):80.'setBSY(obs_setBSY):80.'setid0:0.Arbitrate0

+ isSEL(obs_isSEL):0.LUN0 + isBSY(obs_isBSY):0.LUN0

* Arbitration Phase

proc Arbitrate0 = noid1(obs_winner_id0):480.'setSEL(obs_setSEL):0.Selection0

+ isid1(obs_winner_id1):480.LUN0

* Selection Phase

proc Selection0 = 'writetarget1:240.'setATN:9.'relBSY(obs_relBSY):18.isBSY:80.

'relSEL(obs_relSEL):9.t(begin_ITP):0.(noIO:0.Initiator0 + isIO:0.Target0)

* Initiator

proc Initiator0 = H0 [> noBSY(obs_noBSY):0.'relATN:0.LUN0

proc H0 = t:9.'setATN(obs_setATN):9.H0

+ isREQ(obs_isREQ):9.(noMSG:0.(noCD:0.(noIO:0.DataOutI0 + isIO:0.DataInI0)

+ isCD:0.(noIO:0.CommandI0 + isIO:0.StatusI0)

)

+ isMSG:0.isCD:0.(noIO:0.MsgOutI0 + isIO:0.MsgInI0)

)

* Target

proc Target0 = (noIO:0.MsgOutT0 + isIO:0.'relATN:0.MsgInT0) [> noBSY:0.'relATN:0.LUN0

* MsgIn and MsgOut Phases

proc MsgInI0 = isREQ:0.(readmsgIn:0.'setACK:0.noREQ:0.'relACK:0.MsgInI0

+ readfinished:0.'setACK:0.noREQ:0.'relACK:0.H0

+ readcomplete:0.'setACK:0.noREQ:0.'relACK:0.nil

+ readdisconnect:0.'setACK:0.noREQ:0.'relACK:0.nil

)

proc MsgInT0 = 'setMSG:0.'setCD:0.'setIO(begin_MsgIn):0.t(begin_Phase):0.MsgInT0'

proc MsgInT0' = 'placemsgIn:0.'setREQ(obs_setREQ):9.isACK(obs_isACK):0.'release:0.

'relREQ(obs_relREQ):0.noACK:0.MsgInT0'

+ 'placefinished:0.'setREQ(obs_setREQ):9.isACK(obs_isACK):0.

'release:0.'relREQ(obs_relREQ):0.noACK(end_Phase):0.

(MsgOutT0 + DataOutT0 + DataInT0 + CommandT0 + StatusT0)

23

+ 'sentcomplete:0.'setREQ:9.isACK(obs_isACK):0.'release:0.'relREQ(obs_relREQ):0.

noACK(end_Phase):0.t(end_ITP):0.'relBSY(obs_relBSY):0.nil

+ 'sentdisconnect:0.'setREQ:9.isACK(obs_isACK):0.'release:0.'relREQ(obs_relREQ):0.

noACK(end_Phase):0.t(end_ITP):0.'relBSY(obs_relBSY):0.nil

proc MsgOutI0 = isREQ:0.('placemsgOut:0.'setACK:9.noREQ:0.'release:0.'relACK:0.MsgOutI0

+ 'placefinished:0.'relATN:9.'setACK:0.noREQ:0.'release:0.'relACK:0.H0

)

proc MsgOutT0 = isATN:0.'setMSG:0.'setCD:0.'relIO(begin_MsgOut):0.t(begin_Phase):0.MsgOutT0'

proc MsgOutT0' = 'setREQ:0.isACK(obs_isACK):0.

(readmsgOut:0.'relREQ(obs_relREQ):0.noACK(obs_noACK):0.MsgOutT0'

+ readfinished:0.'relREQ(obs_relREQ):0.noACK:0.

(t(end_Phase):0.(MsgInT0 + DataOutT0 + DataInT0 + CommandT0 + StatusT0)

+ t:0.MsgOutT0'

)

)

* Command Phase

proc CommandI0 = isREQ:0.('placecmd:0.'setACK:9.noREQ:0.'release:0.'relACK:0.CommandI0

+ 'placefinished:0.'setACK:9.noREQ:0.'release:0.'relACK:0.H0

)

proc CommandT0 = 'relMSG:0.'setCD:0.'relIO(begin_Command):0.t(begin_Phase):0.CommandT0'

proc CommandT0' = 'setREQ:0.isACK(obs_isACK):0.

(readcmd:0.'relREQ(obs_relREQ):0.noACK:0.CommandT0'

+ readfinished:0.'relREQ(obs_relREQ):0.noACK:0.t(end_Phase):0.

(MsgOutT0 + MsgInT0 + DataOutT0 + DataInT0 + StatusT0)

)

* DataIn and DataOut Phases

proc DataInI0 = isREQ:0.(readdata:0.'setACK:0.noREQ:0.'relACK:0.DataInI0

+ readfinished:0.'setACK:0.noREQ:0.'relACK:0.H0

)

proc DataInT0 = 'relMSG:0.'relCD:0.'setIO(begin_DataIn):0.t(begin_Phase):0.DataInT0'

proc DataInT0' = 'placedata:0.'setREQ:9.isACK(obs_isACK):0.'release:0.'relREQ(obs_relREQ):0.

noACK:0.DataInT0'

+ 'placefinished:0.'setREQ:9.isACK(obs_isACK):0.'release:0.'relREQ(obs_relREQ):0.

noACK(end_Phase):0.(MsgOutT0 + MsgInT0 + StatusT0)

proc DataOutI0 = isREQ:0.('placedata:0.'setACK:9.noREQ:0.'release:0.'relACK:0.DataOutI0

+ 'placefinished:0.'setACK:9.noREQ:0.'release:0.'relACK:0.H0

)

proc DataOutT0 = 'relMSG:0.'relCD:0.'relIO(begin_DataOut):0.t(begin_Phase):0.DataOutT0'

proc DataOutT0' = 'setREQ:0.isACK(obs_isACK):0.

(readdata:0.'relREQ(obs_relREQ):0.noACK:0.

DataOutT0'

24

+ readfinished:0.'relREQ(obs_relREQ):0.noACK(end_Phase):0.

(MsgOutT0 + MsgInT0 + StatusT0)

)

* Status Phase

proc StatusI0 = readstatus:0.'setACK:0.noREQ:0.'relACK:0.H0

proc StatusT0 = 'relMSG:0.'setCD:0.'setIO(begin_Status):0.t(begin_Phase):0.'placestatus:0.

'setREQ:9.isACK(obs_isACK):0.'release:0.'relREQ(obs_relREQ):0.noACK(end_Phase):0.

(MsgOutT0 + MsgInT0)

*--------

* LUN1

*--------

proc LUN1 = t(start1):9.'relIO:0.(BusFree1 + GetSelected1)

+ t(start1):9.'setIO(obs_setIO):0.(BusFree1 + GetSelected1)

+ t:9.LUN1 + GetSelected1

proc GetSelected1 = isATN:0.(isSEL:0.noBSY:0.readtarget1:0.'setBSY(obs_setBSY):0.'release:0.

'clear:0.noSEL:0.(noIO:0.Target1 + isIO:0.Initiator1)

+ noSEL:0.LUN1

)

* BusFree Phase

proc BusFree1 = t(busfree):80.'setBSY(obs_setBSY):80.'setid1:0.Arbitrate1

+ isSEL(obs_isSEL):0.LUN1 + isBSY(obs_isBSY):0.LUN1

* Arbitration Phase

proc Arbitrate1 = noSEL:80.'setSEL(obs_setSEL):0.Selection1 + isSEL:80.LUN1

* Selection Phase

proc Selection1 = 'writetarget0:240.'setATN:9.'relBSY(obs_relBSY):18.isBSY:80.

'relSEL(obs_relSEL):9.t(begin_ITP):0.(noIO:0.Initiator1 + isIO:0.Target1)

* Initiator

proc Initiator1 = H1 [> noBSY(obs_noBSY1):0.'relATN:0.LUN1

proc H1 = t:9.'setATN(obs_setATN):9.H1

+ isREQ(obs_isREQ1):9.(noMSG:0.(noCD:0.(noIO:0.DataOutI1 + isIO:0.DataInI1)

+ isCD:0.(noIO:0.CommandI1 + isIO:0.StatusI1)

)

+ isMSG:0.isCD:0.(noIO:0.MsgOutI1 + isIO:0.MsgInI1)

)

25

* Target

proc Target1 = (noIO:0.MsgOutT1 + isIO:0.'relATN:0.MsgInT1) [> noBSY:0.'relATN:0.LUN1

* MsgIn and MsgOut Phases

proc MsgInI1 = isREQ:0.(readmsgIn:0.'setACK:0.noREQ:0.'relACK:0.MsgInI1

+ readfinished:0.'setACK:0.noREQ:0.'relACK:0.H1

+ readcomplete:0.'setACK:0.noREQ:0.'relACK:0.nil

+ readdisconnect:0.'setACK:0.noREQ:0.'relACK:0.nil

)

proc MsgInT1 = 'setMSG:0.'setCD:0.'setIO(begin_MsgIn):0.t(begin_Phase):0.MsgInT1'

proc MsgInT1' = 'placemsgIn:0.'setREQ(obs_setREQ):9.isACK(obs_isACK):0.'release:0.

'relREQ(obs_relREQ):0.noACK:0.MsgInT1'

+ 'placefinished:0.'setREQ(obs_setREQ):9.isACK(obs_isACK):0.'release:0.

'relREQ(obs_relREQ):0.noACK(end_Phase):0.

(MsgOutT1 + DataOutT1 + DataInT1 + CommandT1 + StatusT1)

+ 'sentcomplete:0.'setREQ:9.isACK(obs_isACK):0.'release:0.'relREQ(obs_relREQ):0.

noACK(end_Phase):0.t(end_ITP):0.'relBSY(obs_relBSY):0.nil

+ 'sentdisconnect:0.'setREQ:9.isACK(obs_isACK):0.'release:0.relREQ(obs_relREQ):0.

noACK(end_Phase):0.t(end_ITP):0.'relBSY(obs_relBSY):0.nil

proc MsgOutI1 = isREQ:0.('placemsgOut:0.'setACK:9.noREQ:0.'release:0.'relACK:0.MsgOutI1

+ 'placefinished:0.'relATN:9.'setACK:0.noREQ:0.'release:0.'relACK:0.H1

)

proc MsgOutT1 = isATN:0.'setMSG:0.'setCD:0.'relIO(begin_MsgOut):0.t(begin_Phase):0.MsgOutT1'

proc MsgOutT1' = 'setREQ:0.isACK(obs_isACK):0.

(readmsgOut:0.'relREQ(obs_relREQ):0.noACK(obs_noACK):0.MsgOutT1'

+ readfinished:0.'relREQ(obs_relREQ):0.noACK:0.

(t(end_Phase):0.(MsgInT1 + DataOutT1 + DataInT1 + CommandT1 + StatusT1)

+ t:0.MsgOutT1'

)

)

* Command Phase

proc CommandI1 = isREQ:0.('placecmd:0.'setACK:9.noREQ:0.'release:0.'relACK:0.CommandI1

+ 'placefinished:0.'setACK:9.noREQ:0.'release:0.'relACK:0.H1

)

proc CommandT1 = 'relMSG:0.'setCD:0.'relIO(begin_Command):0.t(begin_Phase):0.CommandT1'

proc CommandT1' = 'setREQ:0.isACK(obs_isACK):0.

(readcmd:0.'relREQ(obs_relREQ):0.noACK:0.CommandT1'

+ readfinished:0.'relREQ(obs_relREQ):0.noACK(end_Phase):0.

(MsgOutT1 + MsgInT1 + DataOutT1 + DataInT1 + StatusT1)

)

26

* DataIn and DataOut Phases

proc DataInI1 = isREQ:0.(readdata:0.'setACK:0.noREQ:0.'relACK:0.DataInI1

+ readfinished:0.'setACK:0.noREQ:0.'relACK:0.H1

)

proc DataInT1 = 'relMSG:0.'relCD:0.'setIO(begin_DataIn):0.t(begin_Phase):0.DataInT1'

proc DataInT1' = 'placedata:0.'setREQ:9.isACK(obs_isACK):0.'release:0.'relREQ(obs_relREQ):0.

noACK:0.DataInT1'

+ 'placefinished:0.'setREQ:9.isACK(obs_isACK):0.'release:0.'relREQ(obs_relREQ):0.

noACK(end_Phase):0.(MsgOutT1 + MsgInT1 + StatusT1)

proc DataOutI1 = isREQ:0.('placedata:0.'setACK:9.noREQ:0.'release:0.'relACK:0.DataOutI1

+ 'placefinished:0.'setACK:9.noREQ:0.'release:0.'relACK:0.H1

)

proc DataOutT1 = 'relMSG:0.'relCD:0.'relIO(begin_DataOut):0.t(begin_Phase):0.DataOutT1'

proc DataOutT1' = 'setREQ:0.isACK(obs_isACK):0.

(readdata:0.'relREQ(obs_relREQ):0.noACK:0.

DataOutT1'

+ readfinished:0.'relREQ(obs_relREQ):0.noACK(end_Phase):0.

(MsgOutT1 + MsgInT1 + StatusT1)

)

* Status Phase

proc StatusI1 = readstatus:0.'setACK:0.noREQ:0.'relACK:0.H1

proc StatusT1 = 'relMSG:0.'setCD:0.'setIO(begin_Status):0.t(begin_Phase):0.'placestatus:0.

'setREQ:9.isACK(obs_isACK):0.'release:0.'relREQ(obs_relREQ):0.noACK(end_Phase):0.

(MsgOutT1 + MsgInT1)

*---

* Bus Signals, Data Bus, and Arbitration Variable

*---

proc BusSignals = DataBus

| Arbitrator

| Off[setBSY/set,relBSY/rel,isBSY/on,noBSY/off]

| Off[setSEL/set,relSEL/rel,isSEL/on,noSEL/off]

| Off[setCD /set,relCD /rel,isCD /on,noCD /off]

| Off[setIO /set,relIO /rel,isIO /on,noIO /off]

| Off[setMSG/set,relMSG/rel,isMSG/on,noMSG/off]

| Off[setATN/set,relATN/rel,isATN/on,noATN/off]

| Off[setREQ/set,relREQ/rel,isREQ/on,noREQ/off]

| Off[setACK/set,relACK/rel,isACK/on,noACK/off]

proc Off = 'off:0.Off + set:0.On + rel:0.Off

proc On = 'on:0.On + set:0.On + rel:0.Off

27

proc DataBus = DataBus' [> release(obsrelease):0.DataBus

proc DataBus' = placemsgIn(obsplace):0.'readmsgIn(obsread):0.DataBus'

+ placemsgOut(obsplace):0.'readmsgOut(obsread):0.DataBus'

+ placefinished(obsplace):0.'readfinished(obsread):0.DataBus'

+ placedata(obsplace):0.'readdata(obsread):0.DataBus'

+ placecmd(obsplace):0.'readcmd(obsread):0.DataBus'

+ placestatus(obsplace):0.'readstatus(obsread):0.DataBus'

+ sentdisconnect(obssentdiscon):0.'readdisconnect(obsreaddiscon):0.DataBus'

+ sentcomplete(obssentcomplete):0.'readcomplete(obsreadcomplete):0.DataBus'

+ writetarget0(obswritet0):0.'readtarget0(obsreadt0):0.DataBus'

+ writetarget1(obswritet1):0.'readtarget1(obsreadt1):0.DataBus'

proc Arbitrator = Undef [> clear:0.Arbitrator

proc Undef = setid0:0.Id0 + setid1:0.Id1 + 'noid0:0.Undef + 'noid1:0.Undef

proc Id0 = setid0:0.Id0 + setid1:0.Id1 + 'isid0:0.Id0 + 'noid1:0.Id0

proc Id1 = setid0:0.Id1 + setid1:0.Id1 + 'noid0:0.Id1 + 'isid1:0.Id1

28

